Mostrar el registro sencillo del ítem

dc.contributor.authorJimenez, Lidia
dc.contributor.authorPott, Delphine
dc.contributor.authorDuran, Sara
dc.contributor.authorMott, Daniella
dc.contributor.authorPetit, Aurélie
dc.contributor.authorCelejewska, Karolina
dc.contributor.authorPiecko, Jan
dc.contributor.authorMasny, Agnieska
dc.contributor.authorSavini, Gianluca
dc.contributor.authorChartier, Philippe
dc.contributor.authorKrüger, Erika
dc.contributor.authorSonsteby, Anita
dc.contributor.authorDenoyes, Beatrice
dc.contributor.authorVallarino, José G
dc.contributor.authorOsorio-Algar, Sonia 
dc.date.accessioned2019-02-21T09:56:03Z
dc.date.available2019-02-21T09:56:03Z
dc.date.created2019
dc.date.issued2019-02-21
dc.identifier.urihttps://hdl.handle.net/10630/17356
dc.description.abstractIn this study we are going to use different omic-techniques to analyze fruits of three species of berries such as strawberry, raspberry and black currant. Berry fruit are well appreciated for their delicate flavor and nutraceutical properties, with consumer demand increasing over the last years. Furthermore, climate change and market globalization have made necessary to improve the production while maintaining fruit quality traits. Goodberry project is developping analytical platforms, covering from transcriptomic to metabolites and volatile compounds analysis, to find new factors controlling plant adaptation, fruit production and quality. In this study we implement the metabolomic analysis of strawberry, raspberry and black currant fruits from the 2017 harvest, as well as 2018 harvest during this year. To analyze and compare the data we use multiomic tools and bioinformatics to extract properly conclusion The analyses take different berry cultivars, adapted to diverse environments, were grown in 2017 and 2018 in different latitudes (Germany, France, Norway, Italy, Poland and Scotland). The data comes from a combination of gas-chromatography-mass spectrometry (GC-TOF-MS) and headspace solid phase micro extraction (HS-SPME) coupled with GC-MS was used to semi-quantify fruit primary metabolome and volatilome. Around 50 key primary metabolites, including sugars and acids, which are fundamental factors influencing fruit taste and 75 volatiles, responsible of the aroma, were identified across the different genotypes and climates. Multivariate statistical approaches allow us to point out the genetic and environmental factors underlying complex metabolic traits involved in fruit quality. Preliminary analysis showed that both climate and genetic factors influence primary metabolite and volatile content, even if the environment seems to have a stronger impact on the first one.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Techen_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectClima - Cambios - Aspectos ambientalesen_US
dc.subjectBayasen_US
dc.subject.otherBerryen_US
dc.subject.otherMetabolomicen_US
dc.subject.otherClimate changeen_US
dc.titleMultiomic studies to improve fruit quality of berry fruitsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroFacultad de Cienciasen_US
dc.relation.eventtitleIntroduction to multiomics data integration.en_US
dc.relation.eventplaceWellcome Genome Campus Hinxton, Cambridge CB10 1SD, United Kingdom.en_US
dc.relation.eventdate02/2019en_US
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional