Arquitectura de Computadores
Resumen tesis:
La identificación automática de personas está ganando mucha importancia en los últimos años ya que se puede aplicar en entornos que deben ser seguros (aeropuertos, centrales nucleares, etc) para agilizar todos los procesos de acceso. La mayoría de soluciones desarrolladas para este problema se basan en un amplio abanico de características físicas de los sujetos, como pueden ser el iris, la huella dactilar o la cara. Sin embargo, este tipo de técnicas tienen una serie de limitaciones ya que requieren la colaboración por parte del sujeto a identificar o bien son muy sensibles a cambios en la apariencia. Sin embargo, el reconocimiento del paso es una forma no invasiva de implementar estos controles de seguridad y, adicionalmente, no necesita la colaboración del sujeto. Además, es robusto frente a cambios en la apariencia del individuo ya que se centra en el movimiento.
El objetivo principal de esta tesis es desarrollar un nuevo método para la identificación de personas a partir de la forma de caminar en entornos de múltiples vistas. Como entrada usamos el flujo óptico que proporciona una información muy rica sobre el movimiento del sujeto mientras camina. Para cumplir este objetivo, se han desarrollado dos técnicas diferentes: una basada en un enfoque tradicional de visión por computador donde se extraen manualmente características que definen al sujeto y, una segunda aproximación basada en aprendizaje profundo (deep learning) donde el propio método extrae sus características y las clasifica automáticamente. Además, para este último enfoque, se ha desarrollado una implementación basada en aprendizaje incremental para añadir nuevas clases sin entrenar el modelo desde cero y, un estudio energético para optimizar el consumo de energía durante el entrenamiento.