JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Arquitectura de Computadores - (AC)
    • AC - Tesis
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Arquitectura de Computadores - (AC)
    • AC - Tesis
    • Ver ítem

    Gait recognition from multiple view-points

    • Autor
      Castro Payan, Francisco Manuel
    • Director/es
      Guil-Mata, NicolasAutoridad Universidad de Málaga; Marín Jiménez, Manuel Jesús
    • Fecha
      2018-11-15
    • Editorial/Editor
      UMA Editorial
    • Departamento
      Arquitectura de Computadores
    • Palabras clave
      Arquitectura de ordenadores
    • Resumen
      Arquitectura de Computadores Resumen tesis: La identificación automática de personas está ganando mucha importancia en los últimos años ya que se puede aplicar en entornos que deben ser seguros (aeropuertos, centrales nucleares, etc) para agilizar todos los procesos de acceso. La mayoría de soluciones desarrolladas para este problema se basan en un amplio abanico de características físicas de los sujetos, como pueden ser el iris, la huella dactilar o la cara. Sin embargo, este tipo de técnicas tienen una serie de limitaciones ya que requieren la colaboración por parte del sujeto a identificar o bien son muy sensibles a cambios en la apariencia. Sin embargo, el reconocimiento del paso es una forma no invasiva de implementar estos controles de seguridad y, adicionalmente, no necesita la colaboración del sujeto. Además, es robusto frente a cambios en la apariencia del individuo ya que se centra en el movimiento. El objetivo principal de esta tesis es desarrollar un nuevo método para la identificación de personas a partir de la forma de caminar en entornos de múltiples vistas. Como entrada usamos el flujo óptico que proporciona una información muy rica sobre el movimiento del sujeto mientras camina. Para cumplir este objetivo, se han desarrollado dos técnicas diferentes: una basada en un enfoque tradicional de visión por computador donde se extraen manualmente características que definen al sujeto y, una segunda aproximación basada en aprendizaje profundo (deep learning) donde el propio método extrae sus características y las clasifica automáticamente. Además, para este último enfoque, se ha desarrollado una implementación basada en aprendizaje incremental para añadir nuevas clases sin entrenar el modelo desde cero y, un estudio energético para optimizar el consumo de energía durante el entrenamiento.
    • URI
      https://hdl.handle.net/10630/17371
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_CASTRO_PAYAN_Francisco_Manuel.pdf (3.187Mb)
    Colecciones
    • AC - Tesis

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA