JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Comunicaciones - (IC)
    • IC - Tesis
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Comunicaciones - (IC)
    • IC - Tesis
    • Ver ítem

    Next-Generation Self-Organizing Networks through a Machine Learning Approach

    • Autor
      Palacios, David
    • Director/es
      Barco-Moreno, RaquelAutoridad Universidad de Málaga; De la Bandera Cascales, Isabel
    • Fecha
      2018-12-17
    • Editorial/Editor
      UMA Editorial
    • Departamento
      Ingeniería de Comunicaciones
    • Palabras clave
      Teléfonos móviles
    • Resumen
      Para reducir los costes de gestión de las redes celulares, que, con el tiempo, aumentaban en complejidad, surgió el concepto de las redes autoorganizadas, o self-organizing networks (SON). Es decir, la automatización de las tareas de gestión de una red celular para disminuir los costes de infraestructura (CAPEX) y de operación (OPEX). Las tareas de las SON se dividen en tres categorías: autoconfiguración, autooptimización y autocuración. El objetivo de esta tesis es la mejora de las funciones SON a través del desarrollo y uso de herramientas de aprendizaje automático (machine learning, ML) para la gestión de la red. Por un lado, se aborda la autocuración a través de la propuesta de una novedosa herramienta para una diagnosis automática (RCA), consistente en la combinación de múltiples sistemas RCA independientes para el desarrollo de un sistema compuesto de RCA mejorado. A su vez, para aumentar la precisión de las herramientas de RCA mientras se reducen tanto el CAPEX como el OPEX, en esta tesis se proponen y evalúan herramientas de ML de reducción de dimensionalidad en combinación con herramientas de RCA. Por otro lado, en esta tesis se estudian las funcionalidades multienlace dentro de la autooptimización y se proponen técnicas para su gestión automática. En el campo de las comunicaciones mejoradas de banda ancha, se propone una herramienta para la gestión de portadoras radio, que permite la implementación de políticas del operador, mientras que, en el campo de las comunicaciones vehiculares de baja latencia, se propone un mecanismo multicamino para la redirección del tráfico a través de múltiples interfaces radio. Muchos de los métodos propuestos en esta tesis se han evaluado usando datos provenientes de redes celulares reales, lo que ha permitido demostrar su validez en entornos realistas, así como su capacidad para ser desplegados en redes móviles actuales y futuras.
    • URI
      https://hdl.handle.net/10630/17379
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_PALACIOS_CAMPOS_David.pdf (10.73Mb)
    Colecciones
    • IC - Tesis

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA