Mostrar el registro sencillo del ítem

dc.contributor.authorGarcia-Moreno, Alvaro
dc.contributor.authorAmorim-Silva, Vitor
dc.contributor.authorCastillo-Garriga, Araceli 
dc.contributor.authorMenna, Alexandra
dc.contributor.authorKesten, Christopher
dc.contributor.authorValpuesta-Fernandez, Victoriano 
dc.contributor.authorMacho, Alberto
dc.contributor.authorJaillais, Yvon
dc.contributor.authorSanchez-Rodriguez, Clara
dc.contributor.authorBotella-Mesa, Miguel Angel 
dc.date.accessioned2019-05-10T11:46:23Z
dc.date.available2019-05-10T11:46:23Z
dc.date.created2019
dc.date.issued2019-05-10
dc.identifier.urihttps://hdl.handle.net/10630/17636
dc.description.abstractAs sessile organisms, plants require mechanisms to sense and respond to the challenging environment, that encompass both biotic and abiotic factors that results in differential development. In these conditions is essential to balance growth and stress responses. As cell walls shape plant growth, this differential growth response cause alterations to the plant cell wall where cellulose is the major component. Therefore, understanding the mechanisms that regulate cellulose biosynthesis is essential to develop strategies to improve plant production. In Arabidopsis, the TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) gene family is composed by four members (TTL1 to TTL4) and mutations in TTL1, TTL3, and TTL4 genes cause reduced growth under salt and osmotic stress due to defects in plant cell wall integrity. We observe association of TTL3 with most core components in traducing BR signalling, such as LRR-RLK BRI1 or GSK3 BIN2 that modulate cellulose biosynthesis through phosphorylating cellulose synthases. Here, we show that ttl mutants present defects in the plant cell wall, particularly in Isoxaben, salt or sucrose stress. Spinning disk microscopy in etiolated hypocotyls reveals that, TTL proteins are responsible for the cellulose synthase complex (CSC) stability in plasma membrane (PM) upon sucrose stress. Moreover, TTL3 associates with LRR-RLKs that have been shown to be important for cellulose biosynthesis such as FEI1 in the FEI1/FEI2/SOS5 pathway. We aim to investigate the mechanisms by which TTL proteins regulate CesA stability in PM under stress, using a combination of genetics, biochemical, and molecular and cell biology approaches.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work was supported by grants from: (1) Ministerio de Ciencia e Innovación BIO2014-55380-R, BIO2014-56153-REDT; (2) Ministerio de Economía, Industria y Competitividad (BES-2015-071256)en_US
dc.language.isospaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiologíaen_US
dc.subject.othercell wallen_US
dc.subject.othercelluloseen_US
dc.subject.otherarabidopsisen_US
dc.titleUnraveling the mechanism of TTL genes in cellulose biosynthesisen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroFacultad de Cienciasen_US
dc.relation.eventtitleAt the forefront of plant researchen_US
dc.relation.eventplaceBarcelona, Españaen_US
dc.relation.eventdate06/05/2019en_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem