JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Economía Aplicada ( Matemáticas) - (EAM)
    • EAM - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Economía Aplicada ( Matemáticas) - (EAM)
    • EAM - Contribuciones a congresos científicos
    • Ver ítem

    A-GWASF-GA: The New Version of GWASF-GA to Solve Many Objective Problems

    • Autor
      Gonzalez-Gallardo, Sandra; Luque-Gallego, MarianoAutoridad Universidad de Málaga; Saborido, Ruben; Ruiz, Ana Belen
    • Fecha
      2019-06-26
    • Resumen
      A new version of the evolutionary algorithm based on GWASF-GA [1] is proposed in this work. GWASF-GA is an aggregation-based algorithm which uses the Tchebychev metric plus an augmentation term as fitness function and two reference points (the utopian and nadir points) to classify the individuals according to a set of widely-distributed weight vectors. Although this algorithm obtains a good approximation of the Pareto front (PF) for multi-objective optimization problems, this may be more difficult to obtain for many-objective optimization problems due to the fact that the weight vectors used are never updated along the search process. For this reason, we propose a new version of the algorithm, called A-GWASF-GA, in which a dynamic adjustment of the weight vectors is carried out. The main idea is to re-calculate some weight vectors in order to obtain solutions in parts of the PF with a lack of solutions. Firstly, a percentage (p) of the total number of evaluations is performed with the original GWASF-GA [1]. Secondly, during the rest of evaluations (1-p), we re-calculate na times the projection directions determined by a subset of Na weight vectors. The re-calculation process is based on a scattering level, a measure based on the distance of each solution and the solutions around it. According to the scattering level of the generated solutions, we detect the Na weight vectors projecting toward overcrowded areas of the PF and we re-calculate them so that their new projection directions point towards areas of the PF which are not so well approximated. In order to show the effectiveness of A-GWASF-GA, we compare it with NSGA-III [2, 3], MOEA/D [4], MOEA/D-AWA [5] and the original GWASF-GA.To evaluate their performance, we use the IGD metric [6]. The results of the computational experiment demonstrate the good performance of A-GWASF-GA in the novel many-objective optimization benchmark problems considered.
    • URI
      https://hdl.handle.net/10630/17892
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    AGWASF-GA MCDM 2019.pdf (160.9Kb)
    Colecciones
    • EAM - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA