JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    A weakly-supervised approach for discovering common objects in airport video surveillance footage

    • Autor
      Castro Payán, Francisco Manuel; Delgado-Escaño, Rubén; Guil-Mata, NicolásAutoridad Universidad de Málaga; Marín-Jiménez, Manuel J.
    • Fecha
      2019-07-22
    • Palabras clave
      Reconocimiento de patrones (Informática); Análisis de imágenes; Congresos y conferencias
    • Resumen
      Object detection in video is a relevant task in computer vision. Standard and current detectors are typically trained in a strongly supervised way, what requires a huge amount of labelled data. In contrast, in this paper we focus on object discovery in video sequences by using sets of unlabelled data. Thus, we present an approach based on the use of two region proposal algorithms (a pretrained Region Proposal Network and an Optical Flow Proposal) to produce regions of interest that will be grouped using a clustering algorithm. Therefore, our system does not require the collaboration of a human except for assigning human understandable labels to the discovered clusters. We evaluate our approach in a set of videos recorded at the outdoor area of an airport where the aeroplanes park to load passengers and luggage (apron area). Our experimental results suggest that the use of an unsupervised approach is valid for automatic object discovery in video sequences, obtaining a CorLoc of 86.8 and a mAP of 0.374 compared to a CorLoc of 70.4 and mAP of 0.683 achieved by a supervised Faster R-CNN trained and tested on the same dataset.
    • URI
      https://hdl.handle.net/10630/18109
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    IBPRIA2019_Airports.pdf (1.810Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA