Mostrar el registro sencillo del ítem

dc.contributor.authorCastro Payán, Francisco Manuel
dc.contributor.authorDelgado-Escaño, Rubén
dc.contributor.authorGuil-Mata, Nicolás 
dc.contributor.authorMarín-Jiménez, Manuel J.
dc.date.accessioned2019-07-22T11:12:44Z
dc.date.available2019-07-22T11:12:44Z
dc.date.created2019
dc.date.issued2019-07-22
dc.identifier.urihttps://hdl.handle.net/10630/18109
dc.description.abstractObject detection in video is a relevant task in computer vision. Standard and current detectors are typically trained in a strongly supervised way, what requires a huge amount of labelled data. In contrast, in this paper we focus on object discovery in video sequences by using sets of unlabelled data. Thus, we present an approach based on the use of two region proposal algorithms (a pretrained Region Proposal Network and an Optical Flow Proposal) to produce regions of interest that will be grouped using a clustering algorithm. Therefore, our system does not require the collaboration of a human except for assigning human understandable labels to the discovered clusters. We evaluate our approach in a set of videos recorded at the outdoor area of an airport where the aeroplanes park to load passengers and luggage (apron area). Our experimental results suggest that the use of an unsupervised approach is valid for automatic object discovery in video sequences, obtaining a CorLoc of 86.8 and a mAP of 0.374 compared to a CorLoc of 70.4 and mAP of 0.683 achieved by a supervised Faster R-CNN trained and tested on the same dataset.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectReconocimiento de patrones (Informática)en_US
dc.subjectAnálisis de imágenesen_US
dc.subjectCongresos y conferenciasen_US
dc.subject.otherObject discoveryen_US
dc.subject.otherWeakly-supervised learningen_US
dc.subject.otherRegion proposalen_US
dc.subject.otherDeep neural networksen_US
dc.titleA weakly-supervised approach for discovering common objects in airport video surveillance footageen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroE.T.S.I. Informáticaen_US
dc.relation.eventtitle9th Iberian Conference on Pattern Recognition and Image Analysisen_US
dc.relation.eventplaceMadrid, Spainen_US
dc.relation.eventdate1 de julio de 2019en_US
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional