JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Preprocesado de flujos de datos para aprendizaje automático mediante reglas CEP.

    • Autor
      Ramirez, Aurora; Moreno, Nathalie; Fernández-Bertoa, ManuelAutoridad Universidad de Málaga; Vallecillo-Moreno, Antonio JesúsAutoridad Universidad de Málaga
    • Fecha
      2019-09-20
    • Palabras clave
      Proceso electrónico de datos
    • Resumen
      El procesamiento de flujos de información constituye un área de gran relevancia dentro de la gestión de datos, pues sus métodos deben ser ágiles y eficientes para soportar el volumen y la velocidad con la que los datos se generan actualmente. Las técnicas de minería de datos han necesitado adaptarse a estas circunstancias, que no solo afectan al modo en el que se aprende de los datos, sino también a la preparación de los mismos. En este contexto, los sistemas de procesamiento de eventos complejos (CEP) pueden facilitar el tratamiento de los datos en tiempo real. Este trabajo propone abordar el preprocesamiento de flujos de datos mediante CEP. El estudio experimental revela que los datos, convenientemente transformados y enriquecidos con información temporal, mejoran la predicción de los algoritmos de aprendizaje automático.
    • URI
      https://hdl.handle.net/10630/18419
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2019-JISBD-023.pdf (248.6Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA