JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Optimal Assignment of Augmented Reality Tasks for Edge-Based Variable Infrastructures

    • Autor
      Cañete Valverde, Ángel Jesús; Amor-Pinilla, María MercedesAutoridad Universidad de Málaga; Fuentes-Fernández, LidiaAutoridad Universidad de Málaga
    • Fecha
      2019-12-18
    • Palabras clave
      Programación ubicua; Internet de las Cosas
    • Resumen
      In the last few years, the number of devices connected to the Internet has increased considerably; so has the data interchanged between these devices and the Cloud, as well as energy consumption and the risk of network congestion. The problem can be alleviated by reducing communication between Internet-of-Things devices and the Cloud. Recent paradigms, such as Edge Computing and Fog Computing, propose to move data processing tasks from the Cloud to nearby devices to where data is produced or consumed. One of the main challenges of these paradigms is to cope with the heterogeneity of the infrastructures where tasks can be offloaded. This paper presents a solution for the optimal allocation of computational tasks to edge devices, with the aim of minimizing the energy consumption of the overall application. The heterogeneity is represented and managed by using Feature Models, widely employed in Software Product Lines. Given the application and infrastructure configurations, our Optimal Tasks Assignment Framework generates the optimal task allocation and resources assignment. The resultant deployment represents the most energy efficient configuration at load-time, without compromising the user experience. The scalability and energy saving of the approach are evaluated in the domain of augmented reality applications
    • URI
      https://hdl.handle.net/10630/19087
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    proceedings-31-00028(1).pdf (694.8Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA