Mostrar el registro sencillo del ítem

dc.contributor.authorGijón, Carolina
dc.contributor.authorToril-Genoves, Matias 
dc.contributor.authorLuna-Ramírez, Salvador 
dc.contributor.authorBejarano-Luque, Juan Luis
dc.contributor.authorMarí-Altozano, María Luisa
dc.date.accessioned2020-09-04T09:03:18Z
dc.date.available2020-09-04T09:03:18Z
dc.date.created2020-09
dc.date.issued2020-09-04
dc.identifier.urihttps://hdl.handle.net/10630/19724
dc.description.abstractNetwork dimensioning is a critical task for cellular operators to avoid degraded user experience and unnecessary upgrades of network resources with changing mobile traffic patterns. For this purpose, smart network planning tools require accurate cell and user capacity estimates. In these tools, throughput is often used as a capacity metric due to its close relationship with user satisfaction. In this work, a comprehensive analysis is carried out to compare different Supervised Learning (SL) algorithms for estimating cell and user throughput in the Down Link (DL) in busy hours from radio measurements collected on a cell basis in the Operation Support System (OSS). To this end, a dataset with the most relevant performance indicators is collected from a Long Term Evolution (LTE) network. Results show that SL algorithms outperform classical multi-variable linear regression approach, achieving an average relative error lower than 10%from only 5 network indicators. kNN and RF show the best results for cell and uses throughput estimation, respectively, when considering the trade-off between model accuracy and storage capacity.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Techen_US
dc.language.isospaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSistemas de comunicaciones móvilesen_US
dc.subjectSistemas de comunicaciones inalámbricosen_US
dc.subject.otherCapacidaden_US
dc.subject.otherLTEen_US
dc.subject.otherAprendizaje supervisadoen_US
dc.titleEstimación de la capacidad en redes LTE mediante aprendizaje supervisadoen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroE.T.S.I. Telecomunicaciónen_US
dc.relation.eventtitleURSI 2020en_US
dc.relation.eventplaceMálaga (España)en_US
dc.relation.eventdate2/9/2020en_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem