JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Comunicaciones - (IC)
    • IC - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Comunicaciones - (IC)
    • IC - Contribuciones a congresos científicos
    • Ver ítem

    Time-dependent KPI generation based on Copula

    • Autor
      Luo Chen, Hao Qiang; Álvarez-Merino, Carlos Simón; Khatib, Emil J.; Barco-Moreno, RaquelAutoridad Universidad de Málaga
    • Fecha
      2020-09-18
    • Palabras clave
      Sistemas de comunicaciones móviles; Aprendizaje automático (Inteligencia artificial)
    • Resumen
      New generations of mobile networks are developed to serve the increasing user and devices connected to the networks. However, the management of these networks has a need of automation, due to the also growing complexity. Self-Organizing Network (SON) was conceived to fulfil the automation of network management, within which troubleshooting is located under Self-Healing (SH). The current tendency is the use of Artificial Intelligence (AI) algorithms that are trained using Machine Learning (ML). This training requires a considerable amount of data. Anyway, the reluctance of operators to sharing their data with the research community causes a scarcity of data representing degradations that can be used for the development and training of ML algorithms. In this paper a method to solve this data sample limitation is proposed. In the first place, the method divides the data into time categories to create models which preserve the time characteristics. Afterwards, it applies statistical copulas to adapt the models into new ones maintaining statistical relationships. Finally, the method returns synthetic data that can be an input for ML. As an example, the data from a real mobile network is processed.
    • URI
      https://hdl.handle.net/10630/19801
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Resumen.pdf (100.6Kb)
    Colecciones
    • IC - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA