Mostrar el registro sencillo del ítem

dc.contributor.authorZhao, Piqi
dc.contributor.authorBao, Xingyuan
dc.contributor.authorChen, Heng
dc.contributor.authorWang, Shoude
dc.contributor.authorLu, Lingchao
dc.contributor.authorGómez-de-la-Torre, María de los Ángeles 
dc.contributor.authorCheng, Xin
dc.date.accessioned2020-09-28T19:48:12Z
dc.date.available2020-09-28T19:48:12Z
dc.date.created2020-09
dc.date.issued2020-09-28
dc.identifier.urihttps://hdl.handle.net/10630/19838
dc.descriptionManuscrito revisado de los autores, aceptado y finalmente publicado en: Construction and Building Materials 264 (2020) 120258), con DOI: https://doi.org/10.1016/j.conbuildmat.2020.120258en_US
dc.description.abstractThan stoichiometric one. However, the hydration mechanism is not well understood, in particular for the effect of Ba/Ca ratio on hydration behavior. To shed light on this issue, high purity C4-xBxA3$ samples with designed element compositions (C4A3$, C3.5B0.5A3$, and C3BA3$) were prepared and their hydration processes were investigated. The results reveal that Ba-doped ye’elimite reacts faster than the stoichiometric ye’elimite. With the increase of Ba/Ca ratio, it can gradually increase the intensity of the initial peak, shorten the dormant period and reduce the total hydration heat. The phase composition evolution based on Rietveld/XRD method demonstrates that the dissolution rate of the C3.5B0.5A3$ and C3BA3$ are about 19% and 28% higher than that of C4A3$ in 6h. Moreover, the hydration sequences and main products varied significantly. The AFt is absent for the system with barium incorporation and AFm tends to be less with the increase of Ba/Ca ratio. This paper also proposes a new acceleration mechanism of Ba-doped ye’elimite. It is summarized as a higher rate of dissolution-precipitation reaction stemmed from higher ion precipitation of BaSO4 and a combination of extra surface for the nucleation sites provided by BaSO4.en_US
dc.description.sponsorshipThis work is supported by the National Key Research and Development Plan of China (No. 2018YFD1101003 and No. 2016YFB0303505), National Natural Science Foundation of China (No. U1806222, 51602126, and 51761145023), Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education (202001), the Taishan Scholars Program, Case-by-Case Project for Top Outstanding Talents of Jinan, Youth Innovation Support Program of Shandong Colleges and Universities (2019KJA017), State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology) (No. SYSJJ2018-12).en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHidrataciónen_US
dc.subjectSulfatos mineralesen_US
dc.subject.otherYe’elimiteen_US
dc.subject.otherHydration mechanismen_US
dc.subject.otherRietvelden_US
dc.subject.otherBarium-ye'elimiteen_US
dc.titleHydration mechanisms of Ba-doped ye’elimite: effect of Ba/Ca ratio on hydration behavioren_US
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Cienciasen_US
dc.identifier.doihttps://doi.org/10.1016/j.conbuildmat.2020.120258
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional