JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Object Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Scenes

    • Autor
      Bañuls, Adrián; Mandow, AnthonyAutoridad Universidad de Málaga; Vázquez-Martín, RicardoAutoridad Universidad de Málaga; Morales-Rodríguez, JesúsAutoridad Universidad de Málaga; García-Cerezo, Alfonso JoséAutoridad Universidad de Málaga
    • Fecha
      2020-11
    • Editorial/Editor
      IEEE
    • Palabras clave
      Robots; Detectores de infrarrojos
    • Resumen
      Visual object recognition is a fundamental challenge for reliable search and rescue (SAR) robots, where vision can be limited by lighting and other harsh environmental conditions in disaster sites. The goal of this paper is to explore the use of thermal and visible light images for automatic object detection in SAR scenes. With this purpose, we have used a new dataset consisting of pairs of thermal infrared (TIR) and visible (RGB) video sequences captured from an all-terrain vehicle moving through several realistic SAR exercises participated by actual first response organisations. Two instances of the open source YOLOv3 convolutional neural network (CNN) architecture are trained from annotated sets of RGB and TIR images, respectively. In particular, frames are labelled with four representative classes in SAR scenes comprising both persons civilian and first-responder) and vehicles (Civilian-car and response-vehicle). Furthermore, we perform a comparative evaluation of these networks that can provide insight for future RGB/TIR fusion.
    • URI
      https://hdl.handle.net/10630/20415
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    SSRR_2020__TIR-RGB-SAR (PREPRINT SAMPLE).pdf (454.9Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA