Reactions of divalent cations (Mg2þ, Co2þ, Ni2þ, and Zn2þ) with R,S-hydroxyphosphonoacetic acid (HPAA) in aqueous solutions (pH values ranging 1.0-4.0) yielded a range of crystalline hydrated M-HPAA hybrids. Onedimensional (1D) chain compounds were formed at room temperature whereas reactions conducted under hydrothermal conditions resulted in two-dimensional (2D) layered frameworks or, in some cases, three-dimensional (3D) networks incorporating various alkaline cations. 1D phases with compositions [M{HO3PCH(OH)CO2}(H2O)2]· 2H2O (M = Mg, Co, and Zn) were isolated. These compounds were dehydrated in liquid water to yield the corresponding [M{HO3PCH(OH)CO2}(H2O)2] compounds lacking the lattice water between the 1D chains. [M{HO3PCH(OH)CO2}(H2O)2] (M = Mg, Ni, Co, Zn) compounds were formed by crystallization at room temperature
(at higher pH values) or also by partial dehydration of 1D compounds with higher hydration degrees. Complete dehydration of these 1D solids at 240-270 ºC led to 3D phases, [M{HO3PCH(OH)CO2}]. The 2D layered compound [Mg{HO3PCH(OH)CO2}(H2O)2] was obtained under hydrothermal conditions. For both synthesis methods, addition of alkali metal hydroxides to adjust the pH usually led to mixed phase materials, whereas direct reactions between the metal oxides and the hydroxyphosphonoacetic acid gave single phase materials. On the other hand, adjusting the pH with acetate salts and increasing the ratio M2þ/HPAA and/or the Aþ/M2þ ratio (A = Na, K) resulted in 3D networks, where the alkali cations were incorporated within the frameworks for charge compensation. The crystal structures of eight new M(II)-HPAA hybrids are reported herein and the thermal behavior related to dehydration/rehydration of some compounds are studied in detail.