El interés por desarrollar redes neuronales artificiales ha resurgido de la mano del Aprendizaje Profundo. En términos simples, el aprendizaje profundo consiste en diseñar y entrenar una red neuronal de gran complejidad y tamaño con una inmensa cantidad de datos. Esta creciente complejidad propone nuevos desafíos, siendo de especial relevancia la optimización del diseño dado un problema. Tradicionalmente, este problema ha sido resuelto en una combinación de conocimiento experto (humano) con prueba y error. Sin embargo, conforme la complejidad aumenta, este acercamiento se vuelve ineficiente (e impracticable).
Esta tesis doctoral aborda el diseño de redes neuronales recurrentes (RNN), un tipo de red neuronal profunda, desde la neuroevolución. Concretamente, se combinan técnicas de aprendizaje automático con metaheurísticas avanzadas, con el fin de proveer una solución eficaz y eficiente. Por otra parte, se aplican las técnicas desarrolladas a problemas de la ciudad inteligente.