Mostrar el registro sencillo del ítem

dc.contributor.authorGranados Ortiz, Francisco Javier
dc.contributor.authorOrtega-Casanova, Joaquin 
dc.date.accessioned2021-05-14T12:36:25Z
dc.date.available2021-05-14T12:36:25Z
dc.date.created2021
dc.date.issued2021-03-27
dc.identifier.citationGranados-Ortiz, FJ & Ortega-Casanova, J. Computational Design in Mechanical Engineering Applications via CFD: Uncertainty Quantification and Optimisation. Global Conference on Mechanical and Mechatronics Engineering 2021, 27-28th March 2021, Virtual - Prague (Czech Republic)es_ES
dc.identifier.urihttps://hdl.handle.net/10630/21818
dc.description.abstractEngineering practice is nowadays inconceivable without the presence of computational tools. Within this context, Computational Fluid Dynamics (CFD) are an essential tool for fluid-based machine design, such as heat exchangers, turbines, cooling processes or aerodynamic performance of vehicles. Among the simulation capabilities of modern softwares, Reynolds-Averaged Navier Stokes (RANS) simulations are the most popular industrial approach, due to the decent computation elapsed times and accuracy for a vast range of applications. However, some engineering applications that simulate complex flows may exhibit certain discrepancies as a consequence of neglected sources of uncertainty. The effect of uncertainty can be even increased when the effect of different sources of inaccuracy are combined in the simulation. Once a reliable computational model is achieved, further designs can be explored. One advantage of CFD is that prototyping costs can be reduced by performing optimisation via simulation. This allows to obtain a large number of data at lower cost than experimental testing. Thus, such data can be further used to train Machine Learning algorithms that may improve or speed up the optimisation process. In this presentation, the aforesaid concepts will be shown. Different examples of uncertainty propagation in CFD simulations of engineering applications will be illustrated. Finally, a successful case of Machine Learning aided optimisation of a mechanical micro heat exchanger/mixer will be presented. This research is supported by the UMA18-FEDERJA-184 funding.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech Investigación subvencionada por: contrato UMA18-FEDERJA-184 y Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI - Junta de Andalucía)es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectDinámica de fluidos - Simulación por ordenadores_ES
dc.subject.otherCFDes_ES
dc.subject.otherUncertainty quantificationes_ES
dc.subject.otherOptimisationes_ES
dc.titleComputational Design in Mechanical Engineering Applications via CFD: Uncertainty Quantification and Optimisationes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroEscuela de Ingenierías Industrialeses_ES
dc.relation.eventtitleGlobal Conference on Mechanical and Mechatronics Engineering 2021es_ES
dc.relation.eventplaceVirtual - Praga (República checa)es_ES
dc.relation.eventdate27-28th March 2021es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem