JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning

    • Autor
      Calderón-Ramírez, Saúl; Murillo-Hernández, Diego; Rojas-Salazar, Kevin; Calvo-Valverde, Luis-Alexander; Yang, Shengxiang; Moemeni, Armaghan; Elizondo Acuña, David Alberto; López-Rubio, EzequielAutoridad Universidad de Málaga; Molina-Cabello, Miguel ÁngelAutoridad Universidad de Málaga
    • Fecha
      2021-07
    • Palabras clave
      Mamas -- Cáncer -- Diagnóstico
    • Resumen
      Computer aided diagnosis for mammogram images have seen positive results through the usage of deep learning architectures. However, limited sample sizes for the target datasets might prevent the usage of a deep learning model under real world scenarios. The usage of unlabeled data to improve the accuracy of the model can be an approach to tackle the lack of target data. Moreover, important model attributes for the medical domain as model uncertainty might be improved through the usage of unlabeled data. Therefore, in this work we explore the impact of using unlabeled data through the implementation of a recent approach known as MixMatch, for mammogram images. We evaluate the improvement on accuracy and uncertainty of the model using popular and simple approaches to estimate uncertainty. For this aim, we propose the usage of the uncertainty balanced accuracy metric.
    • URI
      https://hdl.handle.net/10630/22699
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    N-1031 Saul.pdf (960.6Kb)
    Colecciones
    • Artículos

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA