JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Ensemble ellipse fitting by spatial median consensus

    • Autor
      Thurnhofer Hemsi, Karl; López-Rubio, EzequielAutoridad Universidad de Málaga; Blázquez-Parra, Elidia BeatrizAutoridad Universidad de Málaga; Ladrón-de-Guevara-Muñoz, María del CarmenAutoridad Universidad de Málaga; De-Cózar-Macías, ÓscarAutoridad Universidad de Málaga
    • Fecha
      2021
    • Palabras clave
      Geometría
    • Resumen
      Ellipses are among the most frequently used geometric models in visual pattern recognition and digital image analysis. This work aims to combine the outputs of an ensemble of ellipse fitting methods, so that the deleterious effect of suboptimal fits is alleviated. Therefore, the accuracy of the combined ellipse fit is higher than the accuracy of the individual methods. Three characterizations of the ellipse have been considered by different researchers: algebraic, geometric, and natural. In this paper, the natural characterization has been employed in our method due to its superior performance. Furthermore, five ellipse fitting methods have been chosen to be combined by the proposed consensus method. The experiments include comparisons of our proposal with the original methods and additional ones. Several tests with synthetic and bitmap image datasets demonstrate its great potential with noisy data and the presence of occlusion. The proposed consensus algorithm is the only one that ranks among the first positions for all the tests that were carried out. This demonstrates the suitability of our proposal for practical applications with high occlusion or noise.
    • URI
      https://hdl.handle.net/10630/22736
    • DOI
      https://dx.doi.org/10.1016/j.ins.2021.08.011
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    PrePrint.pdf (11.98Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA