Mostrar el registro sencillo del ítem

dc.contributor.advisorBarco-Moreno, Raquel 
dc.contributor.advisorSánchez-Sánchez, Juan Jesús
dc.contributor.authorKaddoura Marín, Omar
dc.contributor.otherIngeniería de Comunicacioneses_ES
dc.date.accessioned2021-09-24T10:50:47Z
dc.date.available2021-09-24T10:50:47Z
dc.date.issued2021-09
dc.date.submitted2021-06-14
dc.identifier.urihttps://hdl.handle.net/10630/22888
dc.descriptionThese measurements can be obtained from different sources, but these sources are either expensive or not applicable to any network. To solve this problem, this thesis proposes a method that uses information available in any network so that the calibration of predictive maps is converted into universal without losing accuracy with respect to current methods. Furthermore, the complexity of today's networks makes them prone to failure. To save costs, operators employ network self-healing techniques so that networks are able to self-diagnose and even self-fix when possible. Among the various failures that can occur in mobile communication networks, a common case is the existence of sectors whose radiated signal has been exchanged. This issue appears during the network roll-out when engineers accidentally cross feeders of several antennas. Currently, manual methodology is used to identify this problem. Therefore, this thesis presents an automatic system to detect these cases. Finally, special attention has been paid to the computational efficiency of the algorithms developed in this thesis since they have finally been integrated into commercial tools.es_ES
dc.description.abstractInce their origins, mobile communication networks have undergone major changes imposed by the need for networks to adapt to user demand. To do this, networks have had to increase in complexity. In turn, complexity has made networks increasingly difficult to design and maintain. To mitigate the impact of network complexity, the concept of self-organizing networks (SON) emerged. Self-organized networks aim at reducing the complexity in the design and maintenance of mobile communication networks by automating processes. Thus, three major blocks in the automation of networks are identified: self-configuration, self-optimization and self-healing. This thesis contributes to the state of the art of self-organized networks through the identification and subsequent resolution of a problem in each of the three blocks into which they are divided. With the advent of 5G networks and the speeds they promise to deliver to users, new use cases have emerged. One of these use cases is known as Fixed Wireless Access. In this type of network, the last mile of fiber is replaced by broadband radio access of mobile technologies. Until now, regarding self-configuration, greenfield design methodologies for wireless networks based on mobile communication technologies are based on the premise that users have mobility characteristics. However, in fixed wireless access networks, the antennas of the users are in fixed locations. Therefore, this thesis proposes a novel methodology for finding the optimal locations were to deploy network equipment as well as the configuration of their radio parameters in Fixed Wireless Access networks. Regarding self-optimization of networks, current algorithms make use of signal maps of the cells in the network so that the changes that these maps would experience after modifying any network parameter can be estimated. In order to obtain these maps, operators use predictive models calibrated through real network measurements.es_ES
dc.language.isoenges_ES
dc.publisherUMA Editoriales_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSistemas de comunicaciones móviles - Tesis doctoraleses_ES
dc.subject.otherSONes_ES
dc.subject.other5Ges_ES
dc.subject.otherLTEes_ES
dc.titleSelf-Organizing Networks use cases in commercial deploymentses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional