JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Statistical model for mobile user positioning based on social information.

    • Autor
      Bejarano-Luque, Juan Luis; Toril-Genovés, MatíasAutoridad Universidad de Málaga; Fernández-Navarro, MarianoAutoridad Universidad de Málaga; Jiménez, Luis Roberto; Luna-Ramírez, SalvadorAutoridad Universidad de Málaga
    • Fecha
      2021-09
    • Palabras clave
      Redes sociales
    • Resumen
      In spite of the vast set of measurements provided by current mobile networks, cellular operators have problems to pinpoint problematic locations because the origin of such measurements (i.e., user location) is usually not registered. At the same time, social networks generate a huge amount of data that can be used to infer population density. In this work, a data-driven model is proposed to deduce the statistical distribution of connections, exploiting the knowledge of network layout and population density in the sceario. Due to the absence of GPS measurements, the proposed method combines data from radio connection traces stored in the network management system and geolocated posts from social networks. This information is enriched with user context information inferred from their traffic attributes. The method is tested with a large trace dataset from a live Long Term Evolution (LTE) network and a database of geotagged messages from two social networks (Twitter and Flickr).
    • URI
      https://hdl.handle.net/10630/22934
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    PostIRACON_Juanlu.pdf (38.52Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA