Detection systems have recently received considerable attention because of the importance of tracking infected people during SARS-CoV-2 pandemic. Such implementations can be very useful for finding potential victims in the context of emergency response, especially in situations where GPS is not available for inspection by imaging is not practical. Radio signals come into play, and specifically from devices that transmit periodically and with low power consumption. With the rise of Internet of Things and the plethora of wearable devices used in everyday life, like a smartphone, Bluetooth Low Energy (BLE) can provide considerable assistance in locating lost people. This work presents a system for detecting victims in a non-structured environment, by means of a search and rescue (SAR) robot. A real implementation of a close detection robotic platform based on BLE for SAR interventions is laid out. In order to estimate the distance between a robotic agent and potential victims within an experimental area, a Log-distance path loss model is presented, which has been tuned to detect beacons with reasonable accuracy within a range of 25 meters in rugged environments. The proposed scheme has been tested in realistic scenarios during SAR exercises.