Mostrar el registro sencillo del ítem

dc.contributor.authorCañete Valverde, Ángel Jesús
dc.contributor.authorFuentes-Fernández, Lidia 
dc.contributor.authorAmor-Pinilla, Maria Mercedes 
dc.date.accessioned2021-10-06T09:51:35Z
dc.date.available2021-10-06T09:51:35Z
dc.date.created2021-10-06
dc.date.issued2021-09
dc.identifier.urihttps://hdl.handle.net/10630/22961
dc.description.abstractIn order to lower latency and reduce energy consumption, Edge Computing proposes offloading some computation intensive tasks usually performed in the Cloud onto nearby devices in the frontier/Edge of the access networks. However, current task offloading approaches are often quite simple. They neither consider the high diversity of hardware and software technologies present in edge network devices, nor take into account that some tasks may require some specific software and hardware infrastructure to be executed. This paper proposes a task offloading process that leans on Software Product Line technologies, which are a very good option to model the variability of software and hardware present in edge environments. Firstly, our approach automates the separation of application tasks, considering the data and operation needs and restrictions among them, and identifying the hardware and software resources required by each task. Secondly, our approach models and manages separately the infrastructure available for task offloading, as a set of nodes that provide certain hardware and software resources. This separation allows to reason about alternative offloading of tasks with different hardware and software resource requirements, in heterogeneous nodes and minimizing energy consumption. In addition, the offloading process considers alternative implementations of tasks to choose the one that best fits the hardware and software characteristics of available edge network infrastructure. The experimental results shows that our approach reduces the energy consumption in the user node by approximately 41%–62%, and the energy consumption of the devices involved in a task offloading solution by 34-48%es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnergía - Consumo - Estudios, ensayos, conferencias, etc.es_ES
dc.subjectInternet de los objetos - Estudios, ensayos, conferencias, etc.es_ES
dc.subject.otherEdge computinges_ES
dc.subject.otherEnergy efficiencyes_ES
dc.subject.otherSoftware product lineses_ES
dc.titleEnergy-efficient Deployment of IoT Applications in Edge-based Infrastructures: A Software Product Line Approaches_ES
dc.typeinfo:eu-repo/semantics/preprintes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.relation.eventtitle29th International Conference on Information Systems Development (ISD 2021)es_ES
dc.relation.eventplaceValenciaes_ES
dc.relation.eventdate8-10 de septiembre, 2021es_ES
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional