Mostrar el registro sencillo del ítem

dc.contributor.advisorHendrix, Eligius Maria Theodorus 
dc.contributor.authorMuts, Pavlo
dc.contributor.otherArquitectura de Computadoreses_ES
dc.date.accessioned2021-11-05T12:27:35Z
dc.date.available2021-11-05T12:27:35Z
dc.date.created2021-07-03
dc.date.issued2021-11-05
dc.date.submitted2021-07-21
dc.identifier.urihttps://hdl.handle.net/10630/23145
dc.descriptionEn esta tesis se pueden distinguir dos líneas principales de investigación. La primera se ocupa de los métodos de Aproximación Externa (Outer Approximation), mientras que la segunda estudia un solución basada en el método de Generación de Columnas (Column Generation). En esta tesis investigamos y analizamos aspectos teóricos y prácticos de ambas ideas dentro del marco de la descomposición. El objetivo principal de este estudio es desarrollar métodos sistemáticos basados en la descomposición para resolver problemas de gran escala utilizando los métodos de Aproximación Externa y Generación de Columnas. En el capítulo 1 se introduce un concepto importante necesario para la descomposición. Este concepto consiste en una reformulación separable en bloques del problema de programación no lineal de enteros mixtos. En el capítulo 1 también se hace una descripción de los métodos mencionados anteriormente, incluyendo los de Ramificación y Acotación, además de otros conceptos clave que son necesarios para esta tesis, como por ejemplo los de Aproximación Interior, etc. Los capítulos 2, 3 y 4 investigan el uso del concepto de Aproximación Externa. Específicamente, en el capítulo 2 se presenta un algoritmo de Aproximación Externa basado en descomposición para resolver problemas de programación no-lineales convexos enteros-mixtos, basados en la construcción de hiperplanos soporte para un conjunto factible. El capítulo 3 amplia el marco de aplicación de un algoritmo de Aproximación Externa basado en descomposición, a problemas de programación no lineales no convexos enteros mixtos, introduciendo una Aproximación Externa convexa por partes de un conjunto factible no convexo. Otra perspectiva de la definición de Aproximación Externa para problemas no convexos se considera en el capítulo 4, que presenta un algoritmo de Refinamiento Interno y Externo basado en descomposición, que construye una Aproximación Externa al mismo tiempo que calcula la Aproximación Interna usando Generación de Columnas. La Aproximación Externa usada en el algoritmo de Refinamiento Interno y Externo se basa en la visión multiobjetivo de la denominada versión recursos restringidos del problema original. Dos capítulos están dedicados a la Generación de Columnas. En el capítulo 4 se presenta un algoritmo de Generación de Columnas para calcular una Aproximación Interna del problema original. Además se describe un algoritmo heurístico basado en particiones que usa un refinamiento de la Aproximación Interna. El capítulo 5 analiza varias técnicas de aceleración para la Generación de Columnas, donde se describe un algoritmo heurístico general basado en la Generación de Columnas, que puede generar varias soluciones candidatas de alta calidad. El capítulo 6 contiene una breve descripción de la implementación en Python de DECOGO (software de programación no lineal de enteros mixtos).es_ES
dc.description.abstractLa programación no lineal de enteros mixtos es un campo de optimización importante y desafiante. Este tipo de problemas pueden contener variables continuas e enteras, así como restricciones lineales y no lineales. Esta clase de problemas tiene un papel fundamental en la ciencia y la industria, ya que proporcionan una forma precisa de describir fenómenos en diferentes áreas como ingeniería química y mecánica, cadena de suministro, gestión, etc. La mayoría de los algoritmos de última generación para resolver los problemas de programación no lineal de enteros mixtos no convexos están basados en los métodos de ramificación y acotación. El principal inconveniente de este enfoque es que el árbol de búsqueda puede crecer muy rápido impidiendo que el algoritmo encuentre una solución de alta calidad en un tiempo razonable. Una posible alternativa que evite la generación de grandes árboles consiste en hacer uso del concepto de descomposición para hacer que el procedimiento sea más manejable. La descomposición proporciona un marco general en el que el problema original se divide en pequeños subproblemas y sus resultados se combinan en un problema maestro más sencillo. Esta tesis analiza los métodos de descomposición para la programación no lineal de enteros mixtos. El principal objetivo de esta tesis es desarrollar métodos alternativos al de ramificación y acotación, basados en el concepto de descomposición. Para la industria y la ciencia, es importante calcular una solución óptima, o al menos, mejorar la mejor solución disponible hasta ahora. Además, esto debe hacerse en un plazo de tiempo razonable. Por lo tanto, el objetivo de esta tesis es diseñar algoritmos eficientes que permitan resolver problemas de gran escala que tienen una aplicación práctica directa. En particular, nos centraremos en modelos que pueden ser aplicados en la planificación y operación de sistemas energéticos.es_ES
dc.language.isoenges_ES
dc.publisherUMA Editoriales_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProgramación no lineales_ES
dc.subject.otherProgramación no lineales_ES
dc.subject.otherHeuristicaes_ES
dc.subject.otherConstrucción de algoritmoses_ES
dc.subject.otherInformáticaes_ES
dc.titleDecomposition methods for mixed-integer nonlinear programminges_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional