Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz-Beltran, Camilo Andres
dc.contributor.authorRomero-Garces, Adrian
dc.contributor.authorGonzález-García, Martín 
dc.contributor.authorSánchez-Pedraza, Antonio
dc.contributor.authorRodríguez-Fernández, Juan Antonio 
dc.contributor.authorBandera-Rubio, Antonio Jesús 
dc.date.accessioned2022-01-24T09:59:45Z
dc.date.available2022-01-24T09:59:45Z
dc.date.created2022
dc.date.issued2022
dc.identifier.citationExpert Systems With Applications, 194 (2022) 116505es_ES
dc.identifier.urihttps://hdl.handle.net/10630/23657
dc.description.abstractThe detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size, and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola-Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%.es_ES
dc.description.sponsorshipThis work has been partially developed within the project RTI2018-099522-B-C4X, funded by the Gobierno de España and FEDER funds, and the ARMORI project (CEIATECH-10) funded by the University of Málaga. Portions of the research in this paper use the CASIA-Iris V4 collected by the Chinese Academy of Sciences - Institute of Automation (CASIA).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectProcesado de imágenes - Técnicas digitaleses_ES
dc.subject.otherEye detectiones_ES
dc.subject.otherViola-Jones algorithmes_ES
dc.subject.otherAll Programmable System-on-Chipes_ES
dc.titleReal-time embedded eye detection systemes_ES
dc.typejournal articlees_ES
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2022.116505
dc.departamentoTecnología Electrónica
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem