JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Efficient semantic place categorization by a robot through active line-of-sight selection

    • Autor
      Matez-Bandera, Jose Luis; González-Monroy, JavierAutoridad Universidad de Málaga; González-Jiménez, Antonio JavierAutoridad Universidad de Málaga
    • Fecha
      2022
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Robots autónomos
    • Resumen
      In this paper, we present an attention mechanism for mobile robots to face the problem of place categorization. Our approach, which is based on active perception, aims to capture images with characteristic or distinctive details of the environment that can be exploited to improve the efficiency (quickness and accuracy) of the place categorization. To do so, at each time moment, our proposal selects the most informative view by controlling the line-of-sight of the robot’s camera through a pan-only unit. We root our proposal on an information maximization scheme, formalized as a next-best-view problem through a Markov Decision Process (MDP) model. The latter exploits the short-time estimated navigation path of the robot to anticipate the next robot’s movements and make consistent decisions. We demonstrate over two datasets, with simulated and real data, that our proposal generalizes well for the two main paradigms of place categorization (object-based and image-based), outperforming typical camera-configurations (fixed and continuously-rotating) and a pure-exploratory approach, both in quickness and accuracy.
    • URI
      https://hdl.handle.net/10630/23693
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.knosys.2021.108022
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0950705121011217-main.pdf (3.158Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA