JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Dynamic and adaptive fault-tolerant asynchronous federated learning using volunteer edge devices

    • Autor
      Morell Martínez, José Ángel; Alba-Torres, EnriqueAutoridad Universidad de Málaga
    • Fecha
      2022
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Internet
    • Resumen
      The number of devices, from smartphones to IoT hardware, interconnected via the Internet is growing all the time. These devices produce a large amount of data that cannot be analyzed in any data center or stored in the cloud, and it might be private or sensitive, thus precluding existing classic approaches. However, studying these data and gaining insights from them is still of great relevance to science and society. Recently, two related paradigms try to address the above problems. On the one hand, edge computing (EC) suggests to increase processing on edge devices. On the other hand, federated learning (FL) deals with training a shared machine learning (ML) model in a distributed (non-centralized) manner while keeping private data locally on edge devices. The combination of both is known as federated edge learning (FEEL). In this work, we propose an algorithm for FEEL that adapts to asynchronous clients joining and leaving the computation. Our research focuses on adapting the learning when the number of volunteers is low and may even drop to zero. We propose, implement, and evaluate a new software platform for this purpose. We then evaluate its results on problems relevant to FEEL. The proposed decentralized and adaptive system architecture for asynchronous learning allows volunteer users to yield their device resources and local data to train a shared ML model. The platform dynamically self-adapts to variations in the number of collaborating heterogeneous devices due to unexpected disconnections (i.e., volunteers can join and leave at any time). Thus, we conduct comprehensive empirical analysis in a static configuration and highly dynamic and changing scenarios. The public open-source platform enables interoperability between volunteers connected using web browsers and Python processes. (...)
    • URI
      https://hdl.handle.net/10630/24281
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.future.2022.02.024
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0167739X22000735-main.pdf (1.350Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA