Mostrar el registro sencillo del ítem

dc.contributor.authorMurad, Mohsin
dc.contributor.authorTasadduq, Imran A.
dc.contributor.authorOtero-Roth, Pablo 
dc.date.accessioned2022-06-06T10:58:27Z
dc.date.available2022-06-06T10:58:27Z
dc.date.issued2022-03-30
dc.identifier.citationMurad M, Tasadduq IA, Otero P. Coded-GFDM for Reliable Communication in Underwater Acoustic Channels. Sensors. 2022; 22(7):2639. https://doi.org/10.3390/s22072639es_ES
dc.identifier.urihttps://hdl.handle.net/10630/24295
dc.description.abstractThe performance of the coded generalized frequency division multiplexing (GFDM) transceiver has been evaluated in a shallow underwater acoustic channel (UAC). Acoustic transmission is the scheme of choice for communication in UAC since radio waves suffer from absorption and light waves scatter. Although orthogonal frequency division multiplexing (OFDM) has found its ground for multicarrier acoustic underwater communication, it suffers from high peak to average power ratio (PAPR) and out of band (OOB) emissions. We propose a coded-GFDM based multicarrier system since GFDM has a higher spectral efficiency compared to a traditional OFDM system. In doing so, we assess two block codes, namely Bose, Chaudari, and Hocquenghem (BCH) codes, Reed-Solomon (RS) codes, and several convolutional codes. We present the error performances of these codes when used with GFDM. Furthermore, we evaluate the performance of the proposed system using two equalizers: Matched Filter (MF) and Zero-Forcing (ZF). Simulation results show that among the various block coding schemes that we tested, BCH (31,6) and RS (15,3) give the best error performance. Among the convolutional codes that we tested, rate 1/4 convolutional codes give the best performance. However, the performance of BCH and RS codes is much better than the convolutional codes. Moreover, the performance of the ZF equalizer is marginally better than the MF equalizer. In conclusion, using the channel coding schemes with GFDM improves error performance manifolds thereby increasing the reliability of the GFDM system despite slightly higher complexity.es_ES
dc.description.sponsorshipThis research was funded by a grant from the Spanish Ministry of Science and Innovation in the framework of the project “NAUTILUS: Swarms of underwater autonomous vehicles guided by artificial intelligence: its time has come” (PID2020-112502RB/AEI/10.13039/501100011033). The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4300148DSR01). Partial funding for open access charge: Universidad de Málagaes_ES
dc.language.isoenges_ES
dc.publisherIOAP-MPDIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComunicaciónes_ES
dc.subject.otherGeneralized frequency division multiplexinges_ES
dc.subject.otherBlock codeses_ES
dc.subject.otherConvolutional codeses_ES
dc.subject.otherUnderwater acoustices_ES
dc.titleCoded-GFDM for Reliable Communication in Underwater Acoustic Channelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.identifier.doihttps://doi.org/10.3390/s22072639
dc.rights.ccAtribución 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional