Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Gálvez, Juan Francisco
dc.contributor.authorMacías-Sánchez, Jorge 
dc.contributor.authorCastro-Díaz, Manuel Jesús 
dc.contributor.authorDe-la-Asunción-Hernández, Marc
dc.date.accessioned2022-06-15T10:22:02Z
dc.date.available2022-06-15T10:22:02Z
dc.date.issued2022-06-13
dc.identifier.citationRodríguez JF, Macías J, Castro MJ, de la Asunción M, Sánchez-Linares C. Use of Neural Networks for Tsunami Maximum Height and Arrival Time Predictions. GeoHazards. 2022; 3(2):323-344. https://doi.org/10.3390/geohazards3020017es_ES
dc.identifier.urihttps://hdl.handle.net/10630/24378
dc.description.abstractOperational TEWS play a key role in reducing tsunami impact on populated coastal areas around the world in the event of an earthquake-generated tsunami. Traditionally, these systems in the NEAM region have relied on the implementation of decision matrices. The very short arrival times of the tsunami waves from generation to impact in this region have made it not possible to use real-time on-the-fly simulations to produce more accurate alert levels. In these cases, when time restriction is so demanding, an alternative to the use of decision matrices is the use of datasets of precomputed tsunami scenarios. In this paper we propose the use of neural networks to predict the tsunami maximum height and arrival time in the context of TEWS. Different neural networks were trained to solve these problems. Additionally, ensemble techniques were used to obtain better results.es_ES
dc.description.sponsorshipThis work was funded by “Innovative ecosystem with artificial intelligence for Andalusia 20205” project of CEI Andalucía Tech and University of Málaga, UMA-CEIATECH-05. The numerical results presented in this work were performed with the computational resources provided by the Spanish Network for Supercomputing (RES) grants AECT-2020-1-0009 and AECT-2020-2-0001. Finally, this research has been partially supported by the Spanish Government research project MEGAFLOW (RTI2018-096064-B-C21), ChEESE project (EU Horizon 2020, grant agreement N. 823844), and eFlows4HPC project (funded by the EuroHPC JU under contract 955558 and the Ministerio de Ciencia e Innovación, Spain). Partial funding for open access charge: Universidad de Málagaes_ES
dc.language.isoenges_ES
dc.publisherIOAP-MPDIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMaremotoses_ES
dc.subject.otherTsunami modelinges_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherNeural networkes_ES
dc.subject.otherMaximum heightes_ES
dc.subject.otherArrival timees_ES
dc.titleUse of Neural Networks for Tsunami Maximum Height and Arrival Time Predictionses_ES
dc.typejournal articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doi10.3390/geohazards3020017
dc.type.hasVersionVoRes_ES
dc.departamentoAnálisis Matemático, Estadística e Investigación Operativa y Matematica Aplicada
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem