Mostrar el registro sencillo del ítem

dc.contributor.authorZamudio-García, Javier
dc.contributor.authorCaizán-Juanarena, Leire
dc.contributor.authorPorras-Vázquez, José Manuel 
dc.contributor.authorLosilla, Enrique R.
dc.contributor.authorMarrero-López, David 
dc.date.accessioned2022-07-15T09:25:39Z
dc.date.available2022-07-15T09:25:39Z
dc.date.issued2022-07-07
dc.identifier.citationZamudio-García, J., Caizán-Juanarena, L., Porras-Vázquez, J. M., Losilla, E. R., Marrero-López, D., Boosting the Performance of La0.8Sr0.2MnO3-δ Electrodes by The Incorporation of Nanocomposite Active Layers. Adv. Mater. Interfaces 2022, 2200702. https://doi.org/10.1002/admi.202200702es_ES
dc.identifier.urihttps://hdl.handle.net/10630/24692
dc.description.abstractThe use of active layers is a promising strategy to improve the properties of air electrodes for solid oxide fuel cells (SOFCs). In this work, La0.8Sr0.2MnO3-δ is combined with different oxide ion conductors Ce0.9Gd0.1O1.95, Bi1.5Y0.5O3 and Pr6O11 to form highly efficient nanocomposite active layers in a single step by spray-pyrolysis deposition. One of the main advantages of these nanocomposite layers is that the nanoscale microstructure is retained at relatively high sintering temperatures. As a consequence, the interfacial area between the electrode and the electrolyte increases significantly, leading to fast oxide ion transport at the interface, as well as more active sites for the electrochemical reactions. An exhaustive structural, microstructural, and electrochemical characterization of the layers are performed to evaluate their potential use in SOFCs. The incorporation of a La0.8Sr0.2MnO3-δ-Ce0.9Gd0.1O1.95 (LSM-CGO) interlayer decreases the polarization resistance of LSM cathode from 1.71 to 0.46 Ω cm2 at 700 °C. Moreover, a single cell with LSM-CGO interlayer generates a peak power density of 1.20 W cm–2 at 800 °C compared to 0.79 W cm–2 for the same cell without active layer. These results demonstrate the great benefits of using nanocomposite layers to improve the properties of air electrodes.es_ES
dc.description.sponsorshipThis work was funded by Ministerio de Ciencia, Innovación y Universidades through the RTI2018-093735-B-I00 and Junta de Andalucía through UMA18-FEDERJA-033 research grants. JZG thanks the Ministerio de Ciencia, Innovación y Universidades for his FPU grant (FPU17/02621). LCJ would like to thank Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020) for the research support (ref. DOC 01168) and Funding for open access charge: Universidad de Málaga/CBUA.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectrodoses_ES
dc.subject.othernanocompositees_ES
dc.titleBoosting the Performance of La0.8Sr0.2MnO3-δ Electrodes by The Incorporation of Nanocomposite Active Layerses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doihttps://doi.org/10.1002/admi.202200702
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional