JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Edge AI Architectures for a Privacy-Preserving IoT Era

    • Autor
      Atienza Alonso, David
    • Fecha
      2022-07-20
    • Palabras clave
      Internet de los objetos - Estudios, ensayos, conferencias, etc.; Inteligencia artificial - Estudios, ensayos, conferencias, etc.
    • Resumen
      The Internet of Things (IoT) has been hailed as the next frontier of innovation where our everyday objects are connected in ways that improve our lives and transform industries, in particular healthcare. In this talk, Prof. Atienza will first discuss the challenges of ultra-low power (ULP) Multi-Processor System-on-Chip (MPSoC) design and communication in edge Artificial Intelligence (AI) nodes for the design of smart devices and wearables in the IoT context. Then, the opportunities for edge AI architectures to conceive the next generation of federated learning systems in healthcare, as challenging use case, will be highlighted as a scalable way to deliver the IoT concept in a privacy-preserving way. This new trend of edge AI-based MPSoC architectures will need to combine new ULP heterogeneous embedded systems, including reconfigurable neural network accelerators, as well as enabling energy-scalable software layers. The final goal is to have edge AI systems that can gracefully adapt the energy consumption and precision of the IoT application outputs according to the quality requirements of our surrounding world. Moreover, they need to be able to personalize their AI algorithms by enabling training on the edge, as living organisms do to operate efficiently in the real world.
    • URI
      https://hdl.handle.net/10630/24776
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    DavidAtienza_Jul2022.pdf (60.93Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA