JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Numerical validation of simple non-stationary models for self-propelled pitching foils

    • Autor
      Fernández-Feria, RamónAutoridad Universidad de Málaga; Sanmiguel-Rojas, EnriqueAutoridad Universidad de Málaga; Esteban López-Tello, Pablo
    • Fecha
      2022-09-15
    • Editorial/Editor
      Elsevier
    • Resumen
      High-resolution numerical simulations of the self propelled locomotion of two-dimensional pitching foils are used to assess simplified models based on linear potential theory for the fluid-foil interaction. These models are very useful because they provide simple analytical estimations of the swimming velocity, among other relevant features of the aquatic locomotion of fishes and underwater robotic devices propelled by flapping foils. In particular, we consider a pitching foil self-propelled from two different models of the unsteady thrust force based on linear potential theory, both complemented with a new simple model for the unsteady viscous friction obtained from the present full-numerical simulations, valid in a wide range of Reynolds numbers (103 ≲ 𝑅𝑒 ≲ 104) of interest for many natural and robotic swimmers. The resulting ordinary differential equation for the swimming velocity is easily integrated numerically, comparing favorably with the full-numerical simulations for small pitch amplitudes (Strouhal numbers 𝑆𝑡 ≲ 0.25) and the above range of Reynolds numbers. Further, when the swimming velocity is small, simple approximate solutions of the dynamic model equation are obtained, whose pitch amplitude validity range is more limited than the numerical solution of the model as the Reynolds number and the foil mass ratio increase, becoming negligibly small when the frequency-based Reynolds number is well over 104. Although both thrust models yield similar quantitative results, they predict qualitatively different dependencies of the swimming velocity on the different non-dimensional parameters
    • URI
      https://hdl.handle.net/10630/24888
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.oceaneng.2022.111973
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0029801822012987-main.pdf (3.091Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA