Recovery of pentoses-containing olive stones for their conversion into furfural in the presence of solid acid catalysts

Loading...
Thumbnail Image

Files

11 Inma.pdf (2.04 MB)

Description: Artículo principal

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Olive stones were employed as feedstock for furfural production in two stages: 1) autohydrolysis of hemicellulosic fraction to recover their pentoses, mainly xylose, and 2) subsequent dehydration of pentoses into furfural. Autohydrolysis step was optimized by using different experimental conditions (temperature: 160-200 ºC and time: 30-75 min), giving rise to liquors with different xylose concentrations, since hydrolysis was incomplete in some cases. The combined use of a commercial γ-Al2O3 and CaCl2 led to total hydrolysis of non-hydrolyzed pentosans after autohydrolysis step, and the subsequent dehydration of pentoses into furfural. The maximum values of furfural yield and efficiency were 23 and 96%, respectively, after only 60 minutes at 150 ºC by using liquor obtained by autohydrolysis at 180 ºC and 30 min (L5.1) as source of pentoses. This liquor, L5.1, provided better catalytic results than other liquors which had shown higher xylose concentration after autohydrolysis, probably due to these latter also exhibited a higher concentration of organic acids; thus, the presence of organic acids such as acetic and lactic acid could promote side undesired reactions leading to lower furfural yields. Finally, γ-Al2O3 was more effective for furfural production under these experimental conditions than other solid acid catalysts, such as mesoporous Nb2O5, Nb-doped SBA-15 and Zr-doped HMS silicas, probably due to alumina has a higher density of acid sites.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional