JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Reconstruction of Gene Regulatory Networks with Multi-objective Particle Swarm Optimisers

    • Autor
      Hurtado-Requena, Sandro JoséAutoridad Universidad de Málaga; García-Nieto, José ManuelAutoridad Universidad de Málaga; Navas-Delgado, IsmaelAutoridad Universidad de Málaga; Nebro-Urbaneja, Antonio JesúsAutoridad Universidad de Málaga; Aldana-Montes, José FranciscoAutoridad Universidad de Málaga
    • Fecha
      2022-07-05
    • Palabras clave
      Genética - Investigación - Congresos; Bioinformática - Congresos
    • Resumen
      The computational reconstruction of Gene Regulatory Networks (GRNs) from gene expression data has been modelled as a complex optimisation problem, which enables the use of sophisticated search methods to address it. Among these techniques, particle swarm optimisation based algorithms stand out as prominent techniques with fast convergence and accurate network inferences. A multi-objective approach for the inference of GRNs consists of optimising a given network’s topology while tuning the kinetic order parameters in an S-System, thus preventing the use of unnecessary penalty weights and enables the adoption of Pareto optimality based algorithms. In this study, we empirically assess the behaviour of a set of multi-objective particle swarm optimisers based on different archiving and leader selection strategies in the scope of the inference of GRNs. The main goal is to provide system biologists with experimental evidence about which optimisation technique performs with higher success for the inference of consistent GRNs. The experiments conducted involve time-series datasets of gene expression taken from the DREAM3/4 standard benchmarks, as well as in vivo datasets from IRMA and Melanoma cancer samples. Our study shows that multiobjective particle swarm optimiser OMOPSO obtains the best overall performance. Inferred networks show biological consistency in accordance with in vivo studies in the literature.
    • URI
      https://hdl.handle.net/10630/25134
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2022-JISBD-2286.pdf (115.0Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA