JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Vehicle overtaking hazard detection over onboard cameras using deep convolutional networks

    • Autor
      García-González, Jorge; García Aguilar, Iván; Medina, Daniel; Luque-Baena, Rafael MarcosAutoridad Universidad de Málaga; López-Rubio, EzequielAutoridad Universidad de Málaga; Domínguez, Enrique
    • Fecha
      2022
    • Palabras clave
      Seguridad vial -- sistemas de visión artificial
    • Resumen
      The development of artificial vision systems to support driving has been of great interest in recent years, especially after new learning models based on deep learning. In this work, a framework is proposed for detecting road speed anomalies, taking as reference the driving vehicle. The objective is to warn the driver in realtime that a vehicle is overtaking dangerously to prevent a possible accident. Thus, taking the information captured by the rear camera integrated into the vehicle, the system will automatically determine if the overtaking that other vehicles make is considered abnormal or dangerous or is considered normal. Deep learning-based object detection techniques will be used to detect the vehicles in the road image. Each detected vehicle will be tracked over time, and its trajectory will be analyzed to determine the approach speed. Finally, statistical regression techniques will estimate the degree of anomaly or hazard of said overtaking as a preventive measure. This proposal has been tested with a significant set of actual road sequences in different lighting conditions with very satisfactory results.
    • URI
      https://hdl.handle.net/10630/25176
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    paper2.pdf (911.9Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA