Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-González, Jorge
dc.contributor.authorGarcía Aguilar, Iván
dc.contributor.authorMedina, Daniel
dc.contributor.authorLuque-Baena, Rafael Marcos 
dc.contributor.authorLópez-Rubio, Ezequiel 
dc.contributor.authorDomínguez, Enrique
dc.date.accessioned2022-10-05T10:08:32Z
dc.date.available2022-10-05T10:08:32Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/10630/25176
dc.description.abstractThe development of artificial vision systems to support driving has been of great interest in recent years, especially after new learning models based on deep learning. In this work, a framework is proposed for detecting road speed anomalies, taking as reference the driving vehicle. The objective is to warn the driver in realtime that a vehicle is overtaking dangerously to prevent a possible accident. Thus, taking the information captured by the rear camera integrated into the vehicle, the system will automatically determine if the overtaking that other vehicles make is considered abnormal or dangerous or is considered normal. Deep learning-based object detection techniques will be used to detect the vehicles in the road image. Each detected vehicle will be tracked over time, and its trajectory will be analyzed to determine the approach speed. Finally, statistical regression techniques will estimate the degree of anomaly or hazard of said overtaking as a preventive measure. This proposal has been tested with a significant set of actual road sequences in different lighting conditions with very satisfactory results.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.language.isospaes_ES
dc.subjectSeguridad vial -- sistemas de visión artificiales_ES
dc.subject.otherTraffic anomaly detectiones_ES
dc.subject.otherOnboard camerases_ES
dc.subject.otherConvolutional Neural Networkses_ES
dc.titleVehicle overtaking hazard detection over onboard cameras using deep convolutional networkses_ES
dc.typeconference outputes_ES
dc.centroE.T.S.I. Informáticaes_ES
dc.relation.eventtitle17th International Conference on Soft Computing Models in Industrial and Environmental Applicationses_ES
dc.relation.eventplaceSalamancaes_ES
dc.relation.eventdate05/09/2022es_ES
dc.departamentoLenguajes y Ciencias de la Computación
dc.rights.accessRightsopen accesses_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem