JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem

    Prescriptive Analytics in Electricity Markets

    • Autor
      Muñoz Díaz, Miguel Ángel
    • Director/es
      Morales-González, Juan MiguelAutoridad Universidad de Málaga; Pineda-Morente, SalvadorAutoridad Universidad de Málaga
    • Fecha
      2022-11-03
    • Editorial/Editor
      UMA Editorial
    • Palabras clave
      Electricidad -- mercado
    • Resumen
      Decision making is critical for any business to survive in a market environment. Examples of decision making tasks are inventory management, resource allocation or portfolio selection. Optimization, understood as the scientific discipline that studies how to solve mathematical programming problems, can help make more efficient decisions in many of these situations. Particularly relevant, because of their frequency and difficulty, are those decisions affected by uncertainty, i.e., in which some of the parameters that precisely determine the optimization problem are unknown when the decision must be made. Fortunately, the development of information technologies has led to an explosion in the availability of data that can be used to assist decisions affected by uncertainty. However, most of the available historical data do not correspond to the unknown parameter of the problem but originate from other related sources. This subset of data, potentially valuable for obtaining better decisions, is called contextual information. This thesis is framed within a new scientific effort that seeks to exploit the potential of data and, in particular, of contextual information in decision making. To this end, in this thesis, we have developed mathematical frameworks and data-driven optimization models that exploit contextual information to make better decisions in problems characterized by the presence of uncertain parameters.
    • URI
      https://hdl.handle.net/10630/25335
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_MUÑOZ_DIAZ_Miguel_Angel.pdf (6.222Mb)
    Colecciones
    • Tesis doctorales

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA