Mostrar el registro sencillo del ítem

dc.contributor.authorZamudio-García, Javier
dc.contributor.authorPorras-Vázquez, José Manuel 
dc.contributor.authorRamírez-Losilla, Enrique 
dc.contributor.authorMarrero-López, David 
dc.date.accessioned2023-01-25T13:28:32Z
dc.date.available2023-01-25T13:28:32Z
dc.date.issued2022-04-05
dc.identifier.citationZamudio-García, Javier, Porras-Vazquez, Jose Manuel, Ramirez-Losilla, Enrique, Marrero-López, David. ACS Appl. Energy Mater. 2022, 5, 4, 4536–4546 Publication Date:April 5, 2022 https://doi.org/10.1021/acsaem.1c04116es_ES
dc.identifier.urihttps://hdl.handle.net/10630/25793
dc.description.abstractLa0.98Cr0.75Mn0.25O3−δ–Ce0.9Gd0.1O1.95 (LCM-CGO) nanocomposite layers with different LCM contents, between 40 and 60 wt %, are prepared in a single step by a spray-pyrolysis deposition method and evaluated as both air and fuel electrodes for solid oxide fuel cells (SOFCs). The formation of fluorite (CGO) and perovskite (LCM) phases in the nanocomposite electrode is confirmed by different structural and microstructural techniques. The intimate mixture of LCM and CGO phases inhibits the grain growth, retaining the nanoscale microstructure even after annealing at 1000 °C with a grain size lower than 50 nm for LCM-CGO compared to 200 nm for pure LCM. The synergetic effect of nanosized LCM and CGO by combining their high electronic and ionic conductivity, respectively, leads to efficient and durable symmetrical electrodes. The best electrochemical properties are found for 50 wt % LCM-CGO, showing polarization resistance values of 0.29 and 0.09 Ω cm2 at 750 °C in air and H2, respectively, compared to 2.05 and 1.9 Ω cm2 for a screen-printed electrode with the same composition. This outstanding performance is mainly ascribed to the nanoscale electrode microstructure formed directly on the electrolyte at a relatively low temperature. These results reveal that the combination of different immiscible phases with different crystal structures and electrochemical properties could be a promising strategy to design highly efficient and durable air and fuel electrodes for SOFCses_ES
dc.description.sponsorshipThis work was funded by Ministerio de Ciencia, Innovación y Universidades through RTI2018-093735-B-I00 and Junta de Andalucia through UMA18-FEDERJA-033 research grants. J.Z.-G. thanks the Ministerio de Ciencia, Innovación y Universidades for his FPU Grant (FPU17/02621). Funding for open access charge: Universidad de Málaga / CBUAes_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectElectrodoses_ES
dc.subject.otherLaCrO3 CeO2es_ES
dc.subject.otherNanocomposite electrodees_ES
dc.subject.otherSymmetrical solid oxide fuel celles_ES
dc.subject.otherSpray pyrolysises_ES
dc.titleLaCrO3–CeO2-Based Nanocomposite Electrodes for Efficient Symmetrical Solid Oxide Fuel Cellses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroFacultad de Cienciases_ES
dc.identifier.doi10.1021/acsaem.1c04116
dc.rights.ccAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional