JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Victim Detection and Localization in Emergencies

    • Autor
      Álvarez-Merino, Carlos Simón; Khatib, Emil Jatib; Qiang Luo-Chen, Hao; Barco-Moreno, RaquelAutoridad Universidad de Málaga
    • Fecha
      2022-11-02
    • Editorial/Editor
      IOAP-MPDI
    • Palabras clave
      Localización
    • Resumen
      Detecting and locating victims in emergency scenarios comprise one of the most powerful tools to save lives. Fast actions are crucial for victims because time is running against them. Radio devices are currently omnipresent within the physical proximity of most people and allow locating buried victims in catastrophic scenarios. In this work, we present the benefits of using WiFi Fine Time Measurement (FTM), Ultra-Wide Band (UWB), and fusion technologies to locate victims under rubble. Integrating WiFi FTM and UWB in a drone may cover vast areas in a short time. Moreover, the detection capacity of WiFi and UWB for finding individuals is also compared. These findings are then used to propose a method for detecting and locating victims in disaster scenarios.
    • URI
      https://hdl.handle.net/10630/25879
    • DOI
      https://dx.doi.org/https://doi.org/10.3390/s22218433
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    sensors-22-08433-v2.pdf (2.857Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA