JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Numerical Methods That Preserve a Lyapunov Function for Ordinary Differential Equations

    • Autor
      Hernández-Solano, YadiraAutoridad Universidad de Málaga; Atencia-Ruiz, Miguel AlejandroAutoridad Universidad de Málaga
    • Fecha
      2022-12-25
    • Editorial/Editor
      IOAP-MDPI
    • Palabras clave
      Ecuaciones diferenciales funcionales
    • Resumen
      The paper studies numerical methods that preserve a Lyapunov function of a dynamical system, i.e., numerical approximations whose energy decreases, just like in the original differential equation. With this aim, a discrete gradient method is implemented for the numerical integration of a system of ordinary differential equations. In principle, this procedure yields first-order methods, but the analysis paves the way for the design of higher-order methods. As a case in point, the proposed method is applied to the Duffing equation without external forcing, considering that, in this case, preserving the Lyapunov function is more important than the accuracy of particular trajectories. Results are validated by means of numerical experiments, where the discrete gradient method is compared to standard Runge–Kutta methods. As predicted by the theory, discrete gradient methods preserve the Lyapunov function, whereas conventional methods fail to do so, since either periodic solutions appear or the energy does not decrease. Moreover, the discrete gradient method outperforms conventional schemes when these do preserve the Lyapunov function, in terms of computational cost; thus, the proposed method is promising.
    • URI
      https://hdl.handle.net/10630/25967
    • DOI
      https://dx.doi.org/https://doi.org/10.3390/math11010071
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    mathematics-11-00071-v2.pdf (986.5Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA