JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tesis doctorales
    • Ver ítem

    Automatic Extraction of Biometric Descriptors Based on Gait

    • Autor
      Delgado-Escaño, Rubén
    • Director/es
      Guil-Mata, NicolásAutoridad Universidad de Málaga; Marín Jiménez, Manuel Jesús
    • Fecha
      2023
    • Fecha de lectura
      2022-10-07
    • Editorial/Editor
      UMA Editorial
    • Palabras clave
      Informática; Ingeniería de telecomunicaciones; Lenguaje computacional
    • Resumen
      Nowadays, people identification is a topic of interest due to its implications in terms of safety, service automation and sanitary control. Historically, people have been identified by using its face, iris, or fingerprints. However, those kinds of systems require the collaboration of the subject to be identified, which implies a problem in some scenarios where collaboration is impossible. Due to this, gait recognition is presented as an alternative in the field of people recognition, since it does not require the cooperation of the subject, or even the knowledge that they are being identified. It can be done at a certain distance, and it is a difficult method to deceive or avoid, since a mask, hood or other typical blocking objects would not deceive the recognition system. However, the study of gait recognition is not exempt from challenges and problems yet to be solved. This thesis focuses on studying and resolving these points that we believe have not been sufficiently addressed. Firstly, we study the viability of soft-biometric classification in gait recognition, human characteristics such as age and gender. Secondly, we address the problem of missing data in a dataset implementing a cross-dataset model that can jointly use multiple datasets with different subjects, captured with different sensors and characteristics. Thirdly, we have implemented a framework to create synthetical samples with multiples subjects in scene. Fourthly, we propose a solution to the missing modality problem, when one or more of the input modalities are missing. Finally, we use knowledge distillation to reduce the computational complexity of a model and its input data, by teaching a model with grayscale images to mimic the predictors obtained by a model using optical flow.
    • URI
      https://hdl.handle.net/10630/26005
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_DELGADO_ESCAÑO_Ruben.pdf (3.155Mb)
    Colecciones
    • Tesis doctorales

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA