JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Time series analysis acceleration with advanced vectorization extensions

    • Autor
      Quislant-del-Barrio, RicardoAutoridad Universidad de Málaga; Fernández-Vega, Iván; Gutiérrez-Carrasco, Eladio DamiánAutoridad Universidad de Málaga; Plata-González, Óscar GuillermoAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      Springer
    • Palabras clave
      Proceso de vectores (Informática)
    • Resumen
      Time series analysis is an important research topic and a key step in monitoring and predicting events in many felds. Recently, the Matrix Profle method, and particularly two of its Euclidean-distance-based implementations—SCRIMP and SCAMP—have become the state-of-the-art approaches in this feld. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profle is embarrassingly parallelizable, we fnd that auto-vectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the auto-vectorization.
    • URI
      https://hdl.handle.net/10630/26387
    • DOI
      https://dx.doi.org/10.1007/s11227-023-05060-2
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    s11227-023-05060-2.pdf (3.008Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA