JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Optimal scheduling of ancillary services provided by an electric vehicle aggregator

    • Autor
      De-la-Torre-Fazio, Sebastián BienvenidoAutoridad Universidad de Málaga; Aguado-Sánchez, José AntonioAutoridad Universidad de Málaga; Sauma, E.
    • Fecha
      2022-11-21
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Vehículos eléctricos; Electricidad -- Experimentos; Ingeniería eléctrica
    • Resumen
      Massification of Electric vehicles (EVs) is becoming a worldwide reality as a means to combat climate change and local pollution. Considering that most of the time vehicles are in parking places, there is an opportunity for using EVs to provide some valuable services to the power network. In particular, EVs can provide ancillary services in electricity markets through an aggregating agent. To this end, EVs aggregators need to develop decision support tools to optimally allocate energy and regulation resources considering power network constraints. Unlike optimization models for EVs aggregators currently available in the literature, in this paper we propose an optimization approach for EVs aggregators that jointly considers the most important aspects influencing EVs profitability, such as uncertainty, drivers’ patterns, capacity constraints, state of charge constraints, regulation demand constraints, regulation offer constraints, regulation bounds constraints, and power-system security constraints. The optimization problem is formulated as a mixed-integer linear programming problem, thus ensuring global optimality. Results are presented in the form of the hourly allocation for charging/discharging power profiles, distinguishing between day-ahead energy and capacity/energy for regulation, and the profit that can be reached, while accounting for network constraints. The proposed model is illustrated through a case study, which allows us to show that EVs aggregators allow for leading to a more reliable power system operation, avoiding transmission lines congestion, while providing important profits for EV owners who are able to provide regulation services.
    • URI
      https://hdl.handle.net/10630/26400
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.energy.2022.126147
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S036054422203033X-main.pdf (1000.Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA