JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A proposal of a mixed diagnostic system based on decision trees and probabilistic experts rules

    • Autor
      Aguilera-Venegas, GabrielAutoridad Universidad de Málaga; Roanes-Lozano, Eugenio; Rojo-Martínez, Gemma; Galán-García, José LuisAutoridad Universidad de Málaga
    • Fecha
      2023
    • Palabras clave
      Diabetes; Sistemas expertos
    • Resumen
      Decision trees and rule-based expert systems (RBES) are standard diagnostic tools. We propose a mixed technique that starts with a probabilistic decision tree where information is obtained from a real world data base. The decision tree is automatically translated into a set of probabilistic rules. Meanwhile a panel of experts proposes their own set of probabilistic rules, according with their experience on the subject. Both sets of rules are combined, generating a mixed RBES with probabilistic rules. The expected probabilities of the rules translating the knowledge in the decision tree are discretized by considering a mapping from intervals of expected probabilities into a set of five values. This way, knowledge coming from real data is completed with the experience of the panel of experts in order to provide a more accurate prediction of suffering from type 2 diabetes mellitus (T2DM) before seven and a half years in the future. The proposed technique is illustrated with a real case using a diabetes diagnosis probabilistic decision tree built using 1350 out of 1800 real cases and the rules provided by a panel of experts in diabetes. The final result takes into account both the probabilities of the rules and the number of times that each possible consequent is reached, giving a probabilistic result among seven possibilities. For modeling the decision tree, 75% of the individuals in the database (randomly selected) have been used and the rest (25%) have been used to test the results. The results of the Mixed RBES have been compared with the results of the Tree RBES (the RBES built using only the rules from the decision tree) and the results of the Experts’ RBES (the RBES built using only the rules from the panel of experts). The accuracy of the predictions of the Mixed RBES is much better.
    • URI
      https://hdl.handle.net/10630/26408
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.cam.2023.115130
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0377042723000742-main.pdf (1.513Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA