Mostrar el registro sencillo del ítem
Padé numerical schemes with Richardson extrapolation for the sine–Gordon equation
dc.contributor.author | Martín-Vergara, Francisca | |
dc.contributor.author | Rus-Mansilla, Francisco de Asís | |
dc.contributor.author | Villatoro-Machuca, Francisco Román | |
dc.date.accessioned | 2023-05-16T09:17:31Z | |
dc.date.available | 2023-05-16T09:17:31Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | F. Martin-Vergara, F. Rus, F.R. Villatoro. ”Padé schemes with Richardson’s extrapolation for the sine–Gordon equation,” Communications in Nonlinear Science and Numerical Simulation 85: 105243 (2020). ISSN 1007-5704, doi:10.1016/j.cnsns.2020.105243. | es_ES |
dc.identifier.issn | 1007-5704 | |
dc.identifier.uri | https://hdl.handle.net/10630/26570 | |
dc.description | Versión preprint ya que por motivos de derechos de propiedad intelectual no es posible subir la versión publicada del artículo. | es_ES |
dc.description.abstract | Four novel implicit finite difference methods with ( q + s ) -th order in space based on ( q, s )-Padé approximations have been analyzed and developed for the sine-Gordon equation. Specifically, (4,0)-, (2,2)-, (4,2)-, and (4,4)-Padé methods. All of them share the treatment for the nonlinearity and integration in time, specifically, the one that results in an energy-conserving (2,0)-Padé scheme. The five methods have been developed with and without Richardson extrapolation in time. All the methods are linearly, unconditionally stable. A comparison among them for both the kink–antikink and breather solutions in terms of global error, computational cost and energy conservation is presented. Our results indicate that the (4,0)- and (4,4)-Padé methods without Richardson extrapolation are the most cost-effective ones for small and large global error, respectively; and the (4,4)-Padé methods in all the cases when Richardson extrapolation is used. | es_ES |
dc.description.sponsorship | Project DeepBIO (TIN2017-85727-C4-1-P) of the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia del Ministerio de Ciencia e Innovación of Spain Project RoCoSoyCo (UMA18-FEDERJA-248) of the Consejería de Economía y Conocimiento, Junta de Andalucía, Spain. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Ecuaciones diferenciales | es_ES |
dc.subject | Métodos numéricos | es_ES |
dc.subject.other | Padé numerical methods | es_ES |
dc.subject.other | Implicit time integration | es_ES |
dc.subject.other | Richardson extrapolation | es_ES |
dc.subject.other | Sine-Gordon equation | es_ES |
dc.title | Padé numerical schemes with Richardson extrapolation for the sine–Gordon equation | es_ES |
dc.type | journal article | es_ES |
dc.centro | Escuela de Ingenierías Industriales | es_ES |
dc.identifier.doi | 10.1016/j.cnsns.2020.105243 | |
dc.type.hasVersion | SMUR | es_ES |
dc.departamento | Lenguajes y Ciencias de la Computación | |
dc.rights.accessRights | open access | es_ES |