JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    A Machine Learning Based Full Duplex System Supporting Multiple Sign Languages for the Deaf and Mute

    • Autor
      Imran Saleem, Muhammad; Siddiqui, Atif Ahmed; Noor, Shaheena; Luque-Nieto, Miguel ÁngelAutoridad Universidad de Málaga; Nava-Baro, EnriqueAutoridad Universidad de Málaga
    • Fecha
      2023-02-28
    • Editorial/Editor
      MDPI
    • Palabras clave
      Mudos; Sordos; Lengua de signos - Innovaciones tecnológicas; Dispositivos de comunicación para minusválidos
    • Resumen
      This manuscript presents a full duplex communication system for the Deaf and Mute (D-M) based on Machine Learning (ML). These individuals, who generally communicate through sign language, are an integral part of our society, and their contribution is vital. They face communication difficulties mainly because others, who generally do not know sign language, are unable to communicate with them. The work presents a solution to this problem through a system enabling the non-deaf and mute (ND-M) to communicate with the D-M individuals without the need to learn sign language. The system is low-cost, reliable, easy to use, and based on a commercial-off-the-shelf (COTS) Leap Motion Device (LMD). The hand gesture data of D-M individuals is acquired using an LMD device and processed using a Convolutional Neural Network (CNN) algorithm. A supervised ML algorithm completes the processing and converts the hand gesture data into speech. A new dataset for the ML-based algorithm is created and presented in this manuscript. This dataset includes three sign language datasets, i.e., American Sign Language (ASL), Pakistani Sign Language (PSL), and Spanish Sign Language (SSL). The proposed system automatically detects the sign language and converts it into an audio message for the ND-M. Similarities between the three sign languages are also explored, and further research can be carried out in order to help create more datasets, which can be a combination of multiple sign languages. The ND-M can communicate by recording their speech, which is then converted into text and hand gesture images. The system can be upgraded in the future to support more sign language datasets. The system also provides a training mode that can help D-M individuals improve their hand gestures and also understand how accurately the system is detecting these gestures. The proposed system has been validated through a series of experiments resulting in hand gesture detection accuracy exceeding 95%
    • URI
      https://hdl.handle.net/10630/26584
    • DOI
      https://dx.doi.org/10.3390/app13053114
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    applsci-13-03114.pdf (19.02Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA