JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Measuring and estimating Key Quality Indicators in Cloud Gaming services

    • Autor
      Baena, Carlos; Peñaherrera-Pulla, Oswaldo Sebastián; Barco-Moreno, RaquelAutoridad Universidad de Málaga; Fortes-Rodríguez, SergioAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Videojuegos; Servidores web
    • Resumen
      The gaming industry has proposed the concept of Cloud Gaming (CG), a paradigm that enhances the gaming experience on reduced hardware devices. However, this paradigm puts a lot of pressure on the communication links that connect the user to the cloud. As a result, the service experience becomes highly dependent on network connectivity. In this context, the present work proposes a framework for measuring and estimating the most important E2E (end-to-end) metrics of the CG service, namely Key Quality Indicators (KQIs). Therefore, different machine learning (ML) techniques are evaluated to predict KQIs related to the CG user experience. For this purpose, the most important KQIs of the service, such as input lag, freezes or perceived video frame rate, are collected in a real network deployment. The results show that ML techniques can be used to estimate these indicators solely from network-related metrics. This is seen as a valuable asset for the delivery of CG services over cellular networks, even without access to the user’s device, as it is expected for telecom operators.
    • URI
      https://hdl.handle.net/10630/26850
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.comnet.2023.109808
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S1389128623002530-main.pdf (1.835Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA