JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Deep learning for coronary artery disease severity classification

    • Autor
      Jiménez-Partinen, Ariadna; Thurnhofer-Hemsi, Karl; Palomo-Ferrer, Esteban JoséAutoridad Universidad de Málaga; Molina-Ramos, Ana I.
    • Fecha
      2023
    • Palabras clave
      Medicina - Innovaciones tecnológicas
    • Resumen
      Medical imaging evaluations are one of the fields where computed-aid diagnosis could improve the efficiency of diagnosis supporting physician decisions. Cardiovascular Artery Disease (CAD) is diagnosed using the gold standard, Invasive Coronary Angiography (ICA). In this work, performance analysis for binary classification of ICA images considering the severity ranges separately is reported, evaluating how performance is affected depending on the degree of lesions considered. For this purpose, an annotated dataset of ICA images was employed, which contains the ground truth, the location and the category of lesions into seven possible ranges: <20 %, [20 %, 49 %], [50 %, 69 %], [70 %, 89 %], [90 %, 98 %], 99 %, and 100 %. The ICA images were pre-processed, divided into patches and balanced by downsampling and data augmentation. In this study, four known pre-trained CNN architectures were trained using different categories of lesion degree as input, whose F-measures are computed. Results report that the F-measures showed a behavior dependent on the narrow presents of the image, being lesions with more than 50 % severity were better classified, achieving an F-measure of 75%.
    • URI
      https://hdl.handle.net/10630/26954
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ASPAI2023-MLH-ICA_classification - RIUMA.pdf (206.6Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA