JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Detecting Feature Influences to Quality Attributes in Large and Partially Measured Spaces using Smart Sampling and Dynamic Learning

    • Autor
      Muñoz-Guerra, Daniel Jesús; Pinto-Alarcón, MónicaAutoridad Universidad de Málaga; Fuentes-Fernández, LidiaAutoridad Universidad de Málaga
    • Fecha
      2023
    • Palabras clave
      Ingeniería del software; Energía-Medición
    • Resumen
      Emergent application domains (e.g., Edge Computing/Cloud /B5G systems) are complex to be built manually. They are characterised by high variability and are modelled by large \textit{Variability Models} (VMs), leading to large configuration spaces. Due to the high number of variants present in such systems, it is challenging to find the best-ranked product regarding particular Quality Attributes (QAs) in a short time. Moreover, measuring QAs sometimes is not trivial, requiring a lot of time and resources, as is the case of the energy footprint of software systems -- the focus of this paper. Hence, we need a mechanism to analyse how features and their interactions influence energy footprint, but without measuring all configurations. While practical, sampling and predictive techniques base their accuracy on uniform spaces or some initial domain knowledge, which are not always possible to achieve. Indeed, analysing the energy footprint of products in large configuration spaces raises specific requirements that we explore in this work. This paper presents SAVRUS (Smart Analyser of Variability Requirements in Unknown Spaces), an approach for sampling and dynamic statistical learning without relying on initial domain knowledge of large and partially QA-measured spaces. SAVRUS reports the degree to which features and pairwise interactions influence a particular QA, like energy efficiency. We validate and evaluate SAVRUS with a selection of likewise systems, which define large searching spaces containing scattered measurements.
    • URI
      https://hdl.handle.net/10630/27043
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Artículo_JISBD.pdf (154.1Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA