JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Transforming numerical feature models into propositional formulas and the universal variability language

    • Autor
      Muñoz-Guerra, Daniel Jesús; Pinto-Alarcón, MónicaAutoridad Universidad de Málaga; Fuentes-Fernández, LidiaAutoridad Universidad de Málaga; Batory, Don
    • Fecha
      2023
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Ingeniería del software
    • Resumen
      Real-world Software Product Lines (SPLs) need Numerical Feature Models (NFMs) whose features have not only boolean values that satisfy boolean constraints but also have numeric attributes that satisfy arithmetic constraints. An essential operation on NFMs finds near-optimal performing products, which requires counting the number of SPL products. Typical constraint satisfaction solvers perform poorly on counting and sampling. Nemo (Numbers, features, models) is a tool that supports NFMs by bit-blasting, the technique that encodes arithmetic expressions as boolean clauses. The newest version, Nemo2, translates NFMs to propositional formulas and the Universal Variability Language (UVL). By doing so, products can be counted efficiently by #SAT and Binary Decision Tree solvers, enabling finding near-optimal products. This article evaluates Nemo2 with a large set of synthetic and colossal real-world NFMs, including complex arithmetic constraints and counting and sampling experiments. We empirically demonstrate the viability of Nemo2 when counting and sampling large and complex SPLs.
    • URI
      https://hdl.handle.net/10630/27069
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.jss.2023.111770
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0164121223001656-main.pdf (976.2Kb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA