JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Artículos
    • Ver ítem

    Testing machine learning algorithms for the prediction of depositional fluxes of the radionuclides 7Be, 210Pb and 40K

    • Autor
      De La Torre Luque, P.; Dueñas-Buey, Mª ConcepciónAutoridad Universidad de Málaga; Gordo Puertas, Elisa; Cañete-Hidalgo, Sergio AndrésAutoridad Universidad de Málaga
    • Fecha
      2023
    • Editorial/Editor
      Elsevier
    • Palabras clave
      Aprendizaje automático (Inteligencia artificial); Isótopos radiactivos; Deposición atmosférica
    • Resumen
      The monthly depositional fluxes of 7Be, 210Pb and 40K were measured at Malaga, (Southern Spain) from 2005 to 2018. In this work, the depositional fluxes of these radionuclides are investigated and their relations with several atmospheric variables have been studied by applying two popular machine learning methods: Random Forest and Neural Network algorithms. We extensively test different configurations of these algorithms and demonstrate their predictive ability for reproducing depositional fluxes. The models derived with Neural Networks achieve slightly better results, in average, although similar, having into account the uncertainties. The mean Pearson-R coefficients, evaluated with a k-fold cross-validation method, are around 0.85 for the three radionuclides using Neural Network models, while they go down to 0.83, 0.79 and 0.8 for 7Be, 210Pb and 40K, respectively, for the Random Forest models. Additionally, applying the Recursive Feature Elimination technique we determine the variables more correlated with the depositional fluxes of these radionuclides, which elucidates the main dependences of their temporal variability.
    • URI
      https://hdl.handle.net/10630/27107
    • DOI
      https://dx.doi.org/https://doi.org/10.1016/j.jenvrad.2023.107213
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    1-s2.0-S0265931X23001066-main.pdf (4.341Mb)
    Colecciones
    • Artículos

    Estadísticas

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA